

Nuclear Physics

Set 8: Binding Energy

8.1		The difference is a single neutron, so the mass difference = $1 \text{ u} = 931 \text{ MeV}$
8.2	(a)	${}^0_0\gamma \rightarrow {}^0_{+1}e + {}^0_{-1}e$
	(b)	mass equivalent, m = electron mass + positron mass = $2 \ge 0.000549 = 0.001098 = 0.001098 \ge 0.00100000000000000000000000000000000$
8.3		mass defect = mass of (92 protons + 143 neutrons) - mass of a uranium-235 nucleus = (92 x 1.00728 u) + (143 x 1.00867 u) - 235.04393 u = 1.86564 u energy equivalent, E = 1.86564 x 931 MeV = 1736.91 MeV (this is the binding energy) so the binding energy per nucleon = 1736.91 MeV \div 235 = 7.39 MeV nucleon ⁻¹
8.4		Binding energy per nucleon is a measure of the stability of the nucleus, so nucleus B is more stable.
8.5	(a)	mass defect = mass of 3 protons + mass of 4 neutrons - mass of a lithium-7 nucleus = $(3 \times 1.00728 \text{ u}) + (4 \times 1.00867 \text{ u}) - 7.01601 \text{ u} = 0.04051 \text{ u}$ energy equivalent, E = $0.04051 \times 931 \text{ MeV} = 37.7 \text{ MeV}$ (this is the binding energy) so the binding energy per nucleon = $37.71 \text{MeV} \div 7 = 5.39 \text{ MeV}$ nucleon ⁻¹
	(b)	mass defect = mass of 53 protons + mass of 78 neutrons - mass of an iodine-131 nucleus = $(53 \times 1.00728 \text{ u}) + (78 \times 1.00867 \text{ u}) - 130.90613 \text{ u} = 1.1560 \text{ u}$ energy equivalent, E = $1.1560 \times 931 \text{ MeV} = 1076.21 \text{ MeV}$ (this is the binding energy) so the binding energy per nucleon = $1076.21 \text{ MeV} \div 131 = 8.22 \text{ MeV}$ nucleon ⁻¹
8.6		H-2: mass defect = mass of 1 proton + mass of 1 neutron - mass of a helium-2 nucleus = $1.00728 \text{ u} + 1.00867 \text{ u} - 2.01355 \text{ u} = 0.0024 \text{ u}$ energy equivalent, E = $0.0024 \text{ x} 931 \text{ MeV} = 2.23 \text{ MeV}$ (this is the binding energy) so the binding energy per nucleon = $2.23 \text{ MeV} \div 2 = 1.12 \text{ MeV}$ nucleon ⁻¹
		H-3: mass defect = mass of 1 proton + mass of 2 neutrons - mass of a helium-3 nucleus = $(1.00728 \text{ u}) + (2 \text{ x } 1.00867 \text{ u}) - 3.01605 \text{ u} = 0.00857 \text{ u}$ energy equivalent, E = $0.00857 \text{ x } 931 \text{ MeV} = 7.98 \text{ MeV}$ (this is the binding energy) so the binding energy per nucleon = $7.98 \text{ MeV} \div 3 = 2.6 \text{ MeV}$ nucleon ⁻¹ Tritium has the higher BE per nucleon
8.7		C-12: mass defect = mass of 6 protons + mass of 6 neutrons - mass of a carbon-12 nucleus = $(6 \times 1.00728 \text{ u}) + (6 \times 1.00867 \text{ u}) - 12 \text{ u} = 0.0957 \text{ u}$ energy equivalent, E = $0.0957 \times 931 \text{ MeV} = 89.1 \text{ MeV}$ (this is the binding energy)

Ø

		so the binding energy per nucleon = $89.1 \text{ MeV} \div 12 = 7.42 \text{ MeV} \text{ nucleon}^{-1}$
		C-14: mass defect = mass of 6 protons + mass of 6 neutrons - mass of a carbon-12 nucleus = $(6 \times 1.00728 \text{ u}) + (8 \times 1.00867 \text{ u}) - 14.00324 \text{ u} = 0.1098 \text{ u}$ energy equivalent, E = $0.1098 \times 931 \text{ MeV} = 102.22 \text{ MeV}$ (this is the binding energy) so the binding energy per nucleon = $102.22 \text{ MeV} \div 14 = 7.30 \text{ MeV}$ nucleon ⁻¹
		C-12 has a greater BE per nucleon so it is more stable.
8.8	(a)	a positron
	(b)	mass of reactants = $2 \times 1.00783 \text{ u} = 2.01456 \text{ u}$ mass of products = $2.01355 \text{ u} + 0.000549 \text{ u} = 2.0141 \text{ u}$ mass defect = $2.01456 \text{ u} - 2.0141 \text{ u} = 0.00046 \text{ u}$ = $0.00046 \times 1.66054 \times 10^{-27} \text{ kg} = 7.64 \times 10^{-31} \text{ kg}$
	(c)	$E = m x c^{2} = 7.64 x 10^{-31} kg x (3 x 10^{8} m s^{-1})^{2} = 6.875 x 10^{-14} J$ $= 6.875 x 10^{-14} J (\div 1.60 x 10^{-13} J) = 0.430 MeV$
8.9	(a)	mass of reactants = $2.01355 \text{ u} + 3.01605 \text{ u} = 5.0285 \text{ u}$ mass of products = $4.00260 \text{ u} + 1.00867 \text{ u} = 5.0102 \text{ u}$ mass defect = $5.0285 \text{ u} - 5.0102 \text{ u} = 0.0183 \text{ u}$ = $0.0133 \text{ x} 1.66054 \text{ x} 10^{-27} \text{kg} = 3.04 \text{ x} 10^{-29} \text{ kg}$
	(b)	$E = m x c^{2} = 3.04 x 10^{-29} kg x (3 x 10^{8} m s^{-1})^{2} = 2.74 x 10^{-12} J$ $= 2.74 x 10^{-12} J (\div 1.60 x 10^{-13} J) = 17.1 MeV$
8.10		mass of reactants = $[238.05079 \text{ u} - (92 \text{ x } 0.000549 \text{ u})] = 238.00028 \text{ u}$ mass of products = $[4.00260 \text{ u} - (2 \text{ x } 0.000549 \text{ u})] + [234.0436 \text{ u} - (90 \text{ x } 0.000549 \text{ u})] = 237.9957 \text{ u}$ mass defect = $238.00028 \text{ u} - 237.9957 \text{ u} = 0.00458 \text{ u}$ = $0.00458 \text{ x } 1.66054 \text{ x } 10^{-27} \text{ kg} = 7.6053 \text{ x } 10^{-30} \text{ kg}$
		$E = m x c^{2} = 7.6053 x 10^{-30} kg x (3 x 10^{8} m s^{-1})^{2} = 6.845 x 10^{-13} J$ $= 6.845 x 10^{-13} J (\div 1.60 x 10^{-13} J) = 4.28 MeV$
8.11	(a)	$^{235}_{92}$ U + $^{1}_{0}$ n \rightarrow $^{142}_{54}$ Xe + $^{90}_{38}$ Sr + 4 $^{1}_{0}$ n - there are four neutrons released in this fission reaction
	(b)	mass of reactants = $[(235.04393 \text{ u} - (92 \text{ x } 0.000549 \text{ u})] + 1.00867 = 236.00209 \text{ u}$ mass of products = $[141.92971 \text{ u} - (54 \text{ x } 0.000549 \text{ u})] + [89.90774 \text{ u} - (38 \text{ x } 0.000549 \text{ u})] + (4 \text{ x } 1.00867 \text{ u})$ = 235.8216 u mass defect = 236.00209 u - 235.8216 u = 0.1805 u = 0.1805 x 1.66054 x 10 ⁻²⁷ kg = 2.9973 x 10 ⁻²⁸ kg

		$E = m x c^{2} = 2.9973 x 10^{-28} kg x (3 x 10^{8} m s^{-1})^{2} = 2.698 x 10^{-11} J$ $= 2.698 x 10^{-11} J (\div 1.60 x 10^{-13} J) = 169 MeV$
	(c)	In a nuclear reactor the chain reaction is controlled however with a nuclear bomb, the reaction is not controlled.
8.12	(a)	The nuclear reaction involves "lost" mass which is converted into energy. The products produced have huge amounts of kinetic energy, generating the thermal energy which then drives the reactor.
	(b)	This energy is not directed to a specific place and requires a coolant to safely take it away where it can be used to produce steam to drive turbines.
8.13	(a)	$^{235}_{92}\text{U} + ^{1}_{0}\text{n} \rightarrow ^{141}_{56}\text{Ba} + ^{92}_{36}\text{Kr} + 3^{1}_{0}\text{n}$
	(b)	mass of reactants = $[(235.04393 \text{ u} - (92 \text{ x} 0.000549 \text{ u})] + 1.00867 \text{ u} = 236.00209 \text{ u}$ mass of products = $[140.91441 \text{ u} - (56 \text{ x} 0.000549 \text{ u})] + [91.92616 \text{ u} - (36 \text{ x} 0.000549 \text{ u})] + (3 \text{ x} 1.00867 \text{ u})$ = 235.8161 u
		mass defect = 236.00209 u - 235.8161 u = 0.1860 u = 0.1860 x 1.66054 x 10^{-27} kg = 3.0886 x 10^{-28} kg
		$E = m x c^{2} = 3.0886 x 10^{-28} kg x (3 x 10^{8} m s^{-1})^{2} = 2.780 x 10^{-11} J$ $= 2.780 x 10^{-11} J (\div 1.60 x 10^{-13} J) = 174 MeV$
	(c)	mass of uranium atom = 235.04393 u x 1.66054 x 10^{-27} kg = 3.903 x 10^{-25} kg
	(d)	number of atoms in 1.00kg of uranium-235 = 1 kg \div 3.903 x 10 ⁻²⁵ kg = 2.56 x 10 ²⁴
	(e)	energy per fission reaction = 174 MeV so energy released when 1.00 kg of pure uranium-235 fissions = $2.780 \times 10^{-11} \text{ J} \times 2.56 \times 10^{24}$ = $7.1 \times 10^{13} \text{ J}$ Assuming that there is one nucleus per uranium atom and that they all undergo the fission process producing the exact same products as specified in part a).
	(f)	Mass of uranium required = $9.76 \times 10^{13} \text{ J} \div 7.1 \times 10^{13} \text{ J} = 1.37 \text{ kg}$
8.14	(a)	$^{1}_{1}H + ^{2}_{1}H \rightarrow ^{3}_{2}He$
	(b)	mass of reactants = $(2.01355 \text{ u} + 1.00783 \text{ u}) = 3.020282 \text{ u}$ mass of products = 3.01603 u mass defect = $3.020282 \text{ u} - 3.014932 \text{ u} = 0.00535 \text{ u}$ = $0.00535 \text{ x} 1.66054 \text{ x} 10^{-27} \text{ kg} = 8.884 \text{ x} 10^{-30} \text{ kg}$ E = m x c ² = $8.884 \text{ x} 10^{-30} \text{ kg x} (3 \text{ x} 10^8 \text{ m s}^{-1})^2 = 7.996 \text{ x} 10^{-13} \text{ J}$
		$= 7.996 \text{ x } 10^{-13} \text{ J} (\div 1.60 \text{ x } 10^{-13} \text{ J}) = 4.998 \text{ MeV}$

	-	
	(c)	mass of deuterium atom = $2.01355 \text{ u} \times 1.66054 \times 10^{-27} \text{ kg} = 3.34 \times 10^{-27} \text{ kg}$ number of atoms in 1.00kg of deuterium = $1 \text{ kg} \div 3.34 \times 10^{-27} \text{ kg} = 2.99 \times 10^{26}$
	(d)	2.39 x 10 ¹⁴ J
8.15		mass of reactants = $[(14.00307 \text{ u} - (7 \text{ x } 0.000549 \text{ u})] + [(4.0026 \text{ u} - (2 \text{ x } 0.000549 \text{ u})] = 18.000729 \text{ u}$
		mass of products = $[(16.994738 \text{ u} - (8 \text{ x} 0.000549 \text{ u})] + 1.00728 \text{ u} = 18.002018 \text{ u}$
		mass defect = $18.000729 - 18.002018$ u = -0.001289 u
		$= -0.001289 \text{ x } 1.66054 \text{ x } 10^{-27} \text{ kg} = -2.14 \text{ x } 10^{-30} \text{ kg}$
		$E = m x c^{2} = -2.14 x 10^{-30} kg x (3 x 10^{8} m s^{-1})^{2} = -1.926 x 10^{-13} J$ $= -1.926 x 10^{-13} J (\div 1.60 x 10^{-13} J) = -1.204 MeV$
		Adding on the original 3 MeV of kinetic energy possessed by the bombarding alpha particle, then the reaction products will have a total $KE = 3 + (-1.204) = 1.80 \text{ MeV}$
8.16	(a)	${}^{14}_{7}N + {}^{1}_{0}n \rightarrow {}^{14}_{6}C + {}^{1}_{1}p$ - the nucleon released is a proton
	(b)	mass of reactants = $[(14.00307 \text{ u} - (7 \text{ x } 0.000549 \text{ u})] + 1.00867 \text{ u} = 15.007897 \text{ u}$ mass of products = $[(14.00324 \text{ u} - (6 \text{ x } 0.000549 \text{ u})] + 1.00728 \text{ u} = 15.007226 \text{ u}$ mass defect = $15.007897 \text{ u} - 15.007226 \text{ u} = 0.000671 \text{ u}$ = $0.000671 \text{ x } 1.66054 \text{ x } 10^{-27} \text{ kg} = 1.11 \text{ x } 10^{-30} \text{ kg}$
	(c)	$E = m x c^{2} = 1.11 x 10^{-30} kg x (3 x 10^{8} m s^{-1})^{2} = 9.99 x 10^{-14} J$ = 9.99 x 10 ⁻¹⁴ J (÷1.60 x 10 ⁻¹³ J) = 0.624 MeV
	(d)	$V = \sqrt{(2 \text{ x } E_k \div m_p)} = \sqrt{[(2 \text{ x } 9.99 \text{ x } 10^{-14} \text{ J} \div (1.67262 \text{ x } 10^{-27} \text{ kg})]} = 1.09 \text{ x } 10^7 \text{ m s}^{-1}$